1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 2 % 可调参数 3 4 test_path=''; 5 neighbour_pixels_affect=3; 6 target_digit=2; 7 % forestTrain()参数设置 8 % .M - [1] number of trees to train 9 % .H - [max(hs)] number of classes10 % .N1 - [5*N/M] number of data points for training each tree11 % .F1 - [sqrt(F)] number features to sample for each node split12 % .split - ['gini'] options include 'gini', 'entropy' and 'twoing'13 % .minCount - [1] minimum number of data points to allow split14 % .minChild - [1] minimum number of data points allowed at child nodes15 % .maxDepth - [64] maximum depth of tree16 % .dWts - [] weights used for sampling and weighing each data point17 % .fWts - [] weights used for sampling features18 % .discretize - [] optional function mapping structured to class labels19 % format: [hsClass,hBest] = discretize(hsStructured,H);20 varargin.M=1000;21 %varargin.H=10;22 23 % forestApply()的输入设置24 % data - [NxF] N length F feature vectors25 % forest - learned forest classification model26 % maxDepth - [] maximum depth of tree27 % minCount - [] minimum number of data points to allow split28 % best - [0] if true use single best prediction per tree29 30 % forestApply()输出结果及对比的阀值31 % hs - [Nx1] predicted output labels32 % ps - [NxH] predicted output label probabilities33 ps_val_more_than0_3=0.2;34 35 %滑窗检测,窗口尺度,步长36 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%37 38 data=[];39 label=[];40 temp_r1=0;41 temp_c1=0;42 43 for i_digit=0:944 % if(i_digit==target_digit) %%%%%%%%%%%%%%%%%%%%%%45 % this_image_label=1;46 % end47 %数字转字符48 str=num2str(i); %%数据是不是不平衡49 path_temp=strcat('C:\Users\cong\Desktop\研一实战\项目\图像中时间数字识别\trainingSample\num',str,'\');50 file=dir(path_temp);51 for i=3:length(file)52 path= strcat(path_temp,file(i).name);53 54 %%%%%%%%%%%%%%%%%%%%%%%%%%55 % 加载图片56 %%%%%%%%%%%%%%%%%%%%%%%%%%57 I=imread(path);58 %I=imread('E:/WeChat.jpg');59 %%%%%%%%%%%%%%%%%%%%%%%%%%60 % 提取channel features61 %%%%%%%%%%%%%%%%%%%%%%%%%%62 [all_channel_difference_features,temp_r1,temp_c1]=extract_features(I,1);63 data=[data,all_channel_difference_features];64 label=[label;i_digit+1];65 66 % if(i>100 && this_image_label~=1) %%这里只取了前100帧,实际上可以随意抽取一百张67 % break;68 % end69 end % for i=3:length(file)70 71 end % for i_digit=0:972 73 %%%%%%%%%%%%%%%%%%%%%%%%%%74 % 扔进分类器中,训练75 %%%%%%%%%%%%%%%%%%%%%%%%%%76 77 forest = forestTrain( data, label, varargin );78 79 %%%%%%%%%%%%%%%%%%%%%%%%%%80 % 检测,测试81 test_image=imread(test_path);82 %滑窗检测,窗口尺度,步长83 [test_r,test_c,test_z]=size(test_image);84 for i_test=1:test_r85 %model86 87 %resize88 test_image=imresize(model,temp_r1,temp_c1);89 test_data=extract_features(test_image,1);90 [hs,ps] = forestApply( test_data, forest, [], [], [] );%尺度问题91 if(ps>ps_val_more_than0_3)92 %画框93 94 end 95 end96 97 %%%%%%%%%%%%%%%%%%%%%%%%%%
1 function [ all_channel_difference_features,,r1,c1 ] = extract_features( I,shrink_or_not ) 2 %EXTRACT_FEATURES 此处显示有关此函数的摘要 3 % 此处显示详细说明 4 %%%%%%%%%%%%%%%%%%%%%%%%%% 5 % 提取channel features 6 %%%%%%%%%%%%%%%%%%%%%%%%%% 7 % 参数设置 8 if(shrink_or_not==1) 9 pChns.shrink=4;10 end11 12 pChns.pColor.enabled=1;13 pChns.pColor.smooth=1;14 pChns.pColor.colorSpace='luv';15 16 pChns.pGradMag.enabled=1;17 pChns.pGradMag.colorChn=0;18 pChns.pGradMag.normRad=5;19 pChns.pGradMag.normConst=.005;20 pChns.pGradMag.full=0;21 22 pChns.pGradHist.enabled=1;23 %pChns.pGradHist.binSize=24 pChns.pGradHist.nOrients=6;25 pChns.pGradHist.softBin=0;26 pChns.pGradHist.useHog=0;27 pChns.pGradHist.clipHog=.2;28 29 %pChns.pCustom.**30 31 %pChns.complete=32 33 % 提取channel features34 chns = chnsCompute( I, pChns );35 % 将各个通道放在矩阵中36 [r1,c1,ch1]=size(chns.data{ 1});37 [r2,c2,ch2]=size(chns.data{ 2});38 [r3,c3,ch3]=size(chns.data{ 3});39 ch=ch1+ch2+ch3;40 all_channel=zeros(r1,c1,ch);41 all_channel(:,:,1:ch1)=chns.data{ 1};42 all_channel(:,:,ch1+1:ch1+ch2)=chns.data{ 2};43 all_channel(:,:,ch1+ch2+1:ch)=chns.data{ 3};44 %%%%%%%%%%%%%%%%%%%%%%%%%%45 % pooling46 %%%%%%%%%%%%%%%%%%%%%%%%%%47 for ii=1:ch48 %向下采样49 all_pooling(:,:,ii)=imresize(all_channel(:,:,ii),0.2);50 end51 52 %%%%%%%%%%%%%%%%%%%%%%%%%%53 % 再次做相减特征54 %%%%%%%%%%%%%%%%%%%%%%%%%%55 all_channel_difference_features=[];56 for ij=1:ch57 temp=difference_features( all_pooling(:,:,ij),neighbour_pixels_affect );58 all_channel_difference_features = [all_channel_difference_features;temp];59 end60 61 end
1 function [ one_channel_difference_features ] = difference_features( one_channel_features,neighbour_pixels_affect ) 2 %DIFFERENCE_FEATURES 计算邻域内个特征之间两两相减 3 %input: 4 % one_channel_features 5 %neighbour_pixels_affect 6 %output: 7 %one_channel_difference_features 8 9 [r,c]=size(one_channel_features);10 11 one_channel_difference_features=[];12 for i=1:r-neighbour_pixels_affect+113 for j=1:c-neighbour_pixels_affect+114 local_features=one_channel_features(i:i+neighbour_pixels_affect-1,j:j+neighbour_pixels_affect-1);15 temp=local_feature_compute(local_features);16 one_channel_difference_features=[one_channel_difference_features;temp];%特征拼接17 end18 end19 end20 21 function [ local_differece_feature ]=local_feature_compute( local_features )22 [r,c]=size(local_features);23 result_mat=local_features-local_features(1,1).*ones(r,c);24 result_vector=reshape(result_mat,r*c,1);25 local_differece_feature=result_vector(2:r*c,1);%把第一个特征去掉,自己减自己没有任何特征信息可言26 end
%{%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 可调参数test_path='C:\Users\cong\Desktop\研一实战\项目\图像中时间数字识别\OCR\one\3.jpg';neighbour_pixels_affect=3;target_digit=2;% forestTrain()参数设置% .M - [1] number of trees to train% .H - [max(hs)] number of classes% .N1 - [5*N/M] number of data points for training each tree% .F1 - [sqrt(F)] number features to sample for each node split% .split - ['gini'] options include 'gini', 'entropy' and 'twoing'% .minCount - [1] minimum number of data points to allow split% .minChild - [1] minimum number of data points allowed at child nodes% .maxDepth - [64] maximum depth of tree% .dWts - [] weights used for sampling and weighing each data point% .fWts - [] weights used for sampling features% .discretize - [] optional function mapping structured to class labels% format: [hsClass,hBest] = discretize(hsStructured,H);varargin.M=1000;%varargin.H=10;% forestApply()的输入设置% data - [NxF] N length F feature vectors% forest - learned forest classification model% maxDepth - [] maximum depth of tree% minCount - [] minimum number of data points to allow split% best - [0] if true use single best prediction per tree% forestApply()输出结果及对比的阀值% hs - [Nx1] predicted output labels% ps - [NxH] predicted output label probabilitiesps_val_more_than0_3=0.2;%滑窗检测,窗口尺度,步长win_h=20;win_w=20;step=1;disp('参数配置成功...');%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%disp('正在读入图片及特征提取...');%读入图片及特征提取data=[];label=[];temp_r1=0;temp_c1=0;for i_digit=0:9% if(i_digit==target_digit) %%%%%%%%%%%%%%%%%%%%%%% this_image_label=1;% end %数字转字符 str=num2str(i_digit); %%数据是不是不平衡 path_temp=strcat('C:\Users\cong\Desktop\研一实战\项目\图像中时间数字识别\trainingSample\num',str,'\'); file=dir(path_temp); for i=3:length(file) path= strcat(path_temp,file(i).name); %%%%%%%%%%%%%%%%%%%%%%%%%% % 加载图片 %%%%%%%%%%%%%%%%%%%%%%%%%% I=imread(path); %I=imread('E:/WeChat.jpg'); %%%%%%%%%%%%%%%%%%%%%%%%%% % 提取channel features %%%%%%%%%%%%%%%%%%%%%%%%%% [all_channel_difference_features,temp_r1,temp_c1]=extract_features(I,neighbour_pixels_affect,1); data=[data,all_channel_difference_features]; label=[label;i_digit+1]; if(rem(i,100)==0) disp('...'); end end % for i=3:length(file) disp('数字') i_digit disp('的特征提取完毕...');end % for i_digit=0:9disp('读入图片及特征提取完毕...');%%%%%%%%%%%%%%%%%%%%%%%%%%% 扔进分类器中,训练%%%%%%%%%%%%%%%%%%%%%%%%%%data=data';disp('正在训练,请稍等...');forest = forestTrain( data, label, varargin );disp('训练完毕...');%}%%%%%%%%%%%%%%%%%%%%%%%%%%% 检测,测试test_label=[];test_label_p=[];win_h=40;win_w=30;windSize = [30,40]; step=2;ps_val_more_than0_3=0.07;disp('正在检测...');test_image=imread(test_path);%滑窗检测,窗口尺度,步长[test_r,test_c,test_z]=size(test_image);figure;imshow(test_image);hold onfor i_test=1:step:test_r-win_h+1 for j_test=1:step:test_c-win_w+1 %model model=test_image(i_test:i_test+win_h-1,j_test:j_test+win_w-1,:); %resize test_image_rs=imresize(model,[temp_r1 temp_c1]); test_data=extract_features(test_image_rs,neighbour_pixels_affect,0); test_data=test_data'; test_data=single(test_data); [hs,ps] = forestApply( test_data, forest,0,0,1);%尺度问题 test_label=[test_label,hs]; test_label_p=[test_label_p,ps(hs)]; if(ps>ps_val_more_than0_3) %画框 %draw_rect(test_image,); i_test j_test rectangle('Position',[i_test,j_test,20,20],'LineWidth',4,'EdgeColor','r'); %pointAll = [i_test,j_test]; %[state,results]=draw_rect(test_image,pointAll,windSize); hold on end end hold onenddisp('检测完毕!恭喜恭喜!')%%%%%%%%%%%%%%%%%%%%%%%%%%